## GLASS AND CERAMICS – SETTING THE SCENE

Finance for Innovation: Towards the ETS Innovation Fund Workshop 3

Andrea Herbst, Tobias Fleiter, Wolfgang Eichhammer

Fraunhofer Institute for Systems and Innovation Research

Brussels, 6th April 2017

## CO2 emissions in glass and ceramics (EU28)



#### CO2 verified emissions:

- Glass: slight decrease
- Ceramics: recovery since economic crisis
- EEA 2015 emissions:
  - Glass: 18 Mt
  - Ceramics: 16 Mt

#### **Production value**

- Similar trends in both industries
- Does not reflect CO2 increase in 2013 in ceramics



## Fuel (EC) mix in glass and ceramics

- Electricity and gas main energy carriers in glass and ceramics
- Natural gas inputs substitute CO2-intensive fossil fuels (like coal, oil and petcoke)
- Low but increasing share of biomass





## Energy carrier mix used in the glas and ceramics industry in Germany, 1995-2014



Source: TBE

## Ambition needed – the EU low-carbon roadmap 2011

Figure 1: EU GHG emissions towards an 80% domestic reduction (100% =1990)



#### Technologies in development/discussion

#### British Glass (2014): Roadmap

- Fuel switch (low carbon fuels, electricity)
- Furnace improvements
- Oxygen-fuel combustion
- Additional waste heat recovery
- CCS
- Batch pelletisation, Batch reformulation
- Material efficiency
- Recycling, ...

#### CeramUnie (2013): Roadmap

- Electrification of kiln
- On-site syngas biogas
- Clay/raw material preconditioning
- New kiln design
- Heat exchanger in kiln stack
- Low-temperature heat recovery from kiln exhaust
- CCS
- Material efficiency
- Recycling, ...

## Clustering mitigation options

|                    | Clusters of mitigation options                                                                                                  | Technology<br>Readiness<br>Levels TRL |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Materials industry | Integrated process improvement - Energy Efficiency (modernization and replacement) - Reduction in process-related emissions     |                                       |
|                    | Fuel switch - towards renewable energy sources (e.g. based on hydrogen) - towards decarbonized electricity (indirect emissions) |                                       |
|                    | End-of-pipe<br>(Carbon Capture and Storage CCS/ Carbon Capture and Use CCU)                                                     |                                       |
| downstream         | Recycling and re-use (innovative recycling processes)                                                                           |                                       |
|                    | Material efficiency (in production and downstream)                                                                              |                                       |
|                    | Material substitution (downstream)                                                                                              |                                       |

## **OPTIMELT**

Advanced heat recovery for oxy-fuel fired

glass furnaces

Joaquín de Diego Rincón Praxair Euroholding, S. L



Brussels, 6th April











## **OPTIMELT (Praxair & Libbey)**

- High efficiency non-catalytic reforming process
- Recycled flue gas with CO2 and water vapor is used for CH4 reforming
- Regenerative system allows high operating temperatures/reforming rate
- Regenerators roughly 1/3 the size of air-fired regenerators



**Endothermic reforming reactions** 

 $CH_4 + H_2O \rightarrow CO + 3H_2$  2060 kcal/Nm<sup>3</sup>  $CH_4$  (215 Btu/scf- $CH_4$ ) US Pat. 6,113,874 / EP 0953543B1  $CH_4 + CO_2 \rightarrow 2CO + 2H_2$  2630 kcal/Nm<sup>3</sup>  $CH_4$  (275 Btu/scf- $CH_4$ )







IBBEY.

## **OPTIMELT (Praxair & Libbey)**

#### Praxair's OPTIMELT<sup>TM</sup>:

- Reduces energy consumption (~20% vs oxy-fuel, ~30% vs. air-regenerative)
- Reduces CO2 emissions
- Reduces air pollutants to the level of oxy-fuel performance (Nox, CO, etc.)
- Reduces flue gas volume and enables smaller air pollution control

#### Libbey OPTIMELT™ startup in 2017

- Expected reduction in energy consumption and CO2 emissions of 45 to 60%
- Project partially funded by European Union with LIFE grant (LIFE 15 CCM/NL/000121)

# Air emissions reduction and energy efficiency improvement with OPTIMELT™ technology







LIFE15 CCM/NL/000121 - LIFE OPTIMELT





## **OPTIMELT (Praxair & Libbey)**

#### **OPTIMELT<sup>TM</sup> Technology Development Path**

- Patent
- 2011-2012 Bench Scale
- 2012-2013Pilot Scale Tests (10 TPD)
- 2014-2016
   PAVISA Commercial Demonstration (50 TPD)
- 2016-2017 LIBBEY Tableware furnace
- 2017-2018Container Furnace (>200 TPD)Engineering Phase
- -> next step: commercial application











## Thank you for your attention!

#### **OPTIMELT:**

Joaquín de Diego Rincón Praxair Euroholding, S. L. Orense 11 9ª planta 28020 Madrid - Spain Joaquin\_de\_Diego@praxair.com Andrea Herbst Fraunhofer ISI Breslauer Straße 48 76139 Karlsruhe – Germany andrea.herbst@isi.fraunhofer.de





